La ciencia de datos: ¿qué es y por qué es importante?
Ya existe una disciplina que se enfoca en eso, precisamente, y queremos que empieces a familiarizarte con ella. Se llama ciencia de datos y, confía en nosotros, una vez que termines este artículo te darás cuenta de que aparece en todos lados. Aprende a tomar decisiones estratégicas basadas en datos para el propulsar el crecimiento empresarial.
Además, ayuda a optimizar los diagnósticos y a establecer mejores procesos de atención a los pacientes. La ciencia de datos aplicada busca extraer lo que se puede aprender de los datos y ofrecer conclusiones que ayuden a comprender a realidad, analizar las causas de los fenómenos o prever escenarios. Los negocios que aplican la ciencia de datos esperan que esta información los ayude a mejorar sus ingresos, su productividad y su eficiencia.
Modelar datos
Como ves la lista de aplicaciones donde se utilizan modelos o algoritmos de “machine learning” y se utiliza la ciencia de datos es interminable. La ciencia de datos consiste en utilizar grandes volúmenes de DATOS para solucionar problemas, encontrar patrones y tendencias, y ayudar en la toma de decisiones de un negocio. Al igual que los humanos El bootcamp de TripleTen: único por su método de enseñanza y plan de carrera utilizamos una amplia variedad de lenguajes, lo mismo ocurre con los científicos de datos. Actualmente existen cientos de lenguajes de programación, por lo que escoger el más apropiado depende de qué se quiera conseguir. A continuación, examinamos algunos de los principales lenguajes de programación utilizados en la ciencia de datos.
Varios proveedores de la nube, incluido IBM® Cloud, también ofrecen kits de herramientas preempaquetados que permiten a los científicos de datos crear modelos sin codificación, democratizando aún más el acceso a las innovaciones tecnológicas y los insights extraídos de los datos. Dado que la ciencia de datos con frecuencia aprovecha grandes conjuntos de datos, las herramientas que pueden escalar con el tamaño de los datos son increíblemente importantes, sobre todo para proyectos con estrechos márgenes de tiempo. Las soluciones de almacenamiento en la nube, como los data lakes, brindan acceso a la infraestructura de almacenamiento, que es capaz de ingerir y procesar grandes volúmenes de datos con facilidad. Estos sistemas de almacenamiento brindan flexibilidad a los usuarios finales, lo que les permite activar grandes clústeres según sea necesario. También pueden agregar nodos de computación incrementales para agilizar los trabajos de procesamiento de datos, lo que permite que la empresa realice compensaciones a corto plazo para obtener un resultado mayor a largo plazo. Las plataformas en la nube suelen tener diferentes modelos de precios, como por uso o suscripciones, para satisfacer las necesidades de su usuario final, ya sean grandes empresas o pequeñas startups.
Lenguajes de programación más usados en ciencia de datos
La inteligencia artificial y las innovaciones del machine learning han hecho que el procesamiento de datos sea más rápido y eficiente. La demanda del sector ha creado un ecosistema de cursos, grados académicos y puestos de trabajo en el campo de la ciencia de datos. Debido al conjunto de competencias https://www.adiario.mx/tecnologia/el-bootcamp-de-tripleten-unico-por-su-metodo-de-ensenanza-y-plan-de-carrera/ multidisciplinarias y a la experiencia necesaria, la ciencia de datos promete un fuerte crecimiento en las próximas décadas. En el deporte también constituye una aplicación de la ciencia de datos, ya que esta ofrece la posibilidad de analizar los patrones de juego y de rendimiento de los atletas.